Synthesis and structures of pyrroles fused with rigid bicyclic ring systems at $\boldsymbol{\beta}$-positions \dagger

Hidemitsu Uno, ${ }^{* b}$ Satoshi Ito, ${ }^{a}$ Mitsuo Wada, ${ }^{a}$ Hikaru Watanabe, ${ }^{,}$Miho Nagai, ${ }^{a}$
Akiko Hayashi, ${ }^{a}$ Takashi Murashima ${ }^{a}$ and Noboru Ono ${ }^{a}$
${ }^{a}$ Department of Chemistry, Faculty of Science, Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan
${ }^{b}$ Advanced Instrumentation Center for Chemical Analysis, Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan

Received (in Cambridge, UK) 11th August 2000, Accepted 6th October 2000
First published as an Advance Article on the web 21st November 2000

Pyrroles fused with bicyclo[2.2.2]octene and bicyclo[2.2.1]heptene frameworks are prepared by a modified BartonZard method. Structures of these pyrroles and thermal behaviours of the former pyrroles are studied by X-ray and DSC analyses.

Introduction

Aromatic compounds fused with a rigid bicyclic skeleton have attracted much attention from both theoretical and synthetic points of view. Various kinds of such compounds have been prepared in order not only to build up highly conjugated aromatic systems ${ }^{1}$ and cage compounds ${ }^{2}$ but also to exemplify the transannular, ${ }^{3}$ bond-alternating, ${ }^{4}$ and radical-cationstabilizing ${ }^{5}$ effects. These effects are closely related to the strained nature of these compounds and have been successfully discussed in connection with their X-ray structures. For example, a bond alternation of $\approx 5 \mathrm{pm}$ was observed for furanfused 10b,10c-dimethyl-10b,10c-dihydropyrene at the 1,2positions and the ring current decreased by $16-17 \% .{ }^{6}$ During the course of our investigation of the modification of electronic properties of polypyrroles and porphyrins, we have also been interested in pyrroles fused with rigid bicycloalkenes at β positions of pyrroles. ${ }^{7}$ In order to understand reactivity and electronic properties of the pyrroles, we have prepared various kinds of such compounds. In this paper, syntheses as well as X-ray and thermal analyses of the pyrroles will be described.

Results and discussion

Preparation of ethyl 4,7-ethano-2 H -isoindole-1-carboxylates

First, we focused our attention on preparing pyrroles fused with bicyclo[2.2.2]octenes (Scheme 1). The known Diels-Alder adduct $\mathbf{1}^{8}$ was chosen as the starting material of a nitro-olefin equivalent in the Barton-Zard pyrrole synthesis, ${ }^{9}$ because the corresponding α, β-unsaturated nitro and sulfonyl compounds were thought to be too unstable to undergo a retro-Diels-Alder reaction. ${ }^{10}$ Treatment of 1 with ethyl isocyanoacetate and DBU in THF brought about the Barton-Zard reaction of 2-nitrobicyclo[2.2.2]octa-2,5-diene generated in situ by the elimination of phenylsulfinate, promptly to give the desired ethanoisoindole $\mathbf{2}$ in good yield, ${ }^{11}$ and no formation of nitrobenzene was detected. The double bond of $\mathbf{2}$ was easily hydrogenated under an atmospheric pressure of hydrogen to give a

[^0]
endo-1

2

exo-1

3
iii

Scheme 1 Reagents and conditions: i) $\mathrm{CNCH}_{2} \mathrm{CO}_{2} \mathrm{Et}, \mathrm{DBU}, \mathrm{THF}$, rt; ii) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{THF}$, rt; iii) $\mathrm{I}_{2}, \mathrm{HlO}_{3}, \mathrm{MeCN}$; iv) $\mathrm{PhB}(\mathrm{OH})_{2}, \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$, $\mathrm{Na}_{2} \mathrm{CO}_{3}$, rt.
partially saturated derivative $\mathbf{3}$ in quantitative yield. Iodination ${ }^{12}$ of 3 with I_{2} and HIO_{3} gave α-iodo derivative 4 in 97% yield. The iodide 4 smoothly reacted with phenylboronic acid under the Suzuki coupling conditions ${ }^{13}$ to give α-phenyl derivative 5 in 86% yield.

One possible drawback in the preparation of $\mathbf{2}$ is the rather tedious preparation of $\mathbf{1}$. We have also reported that α, β-unsaturated sulfones can be employed for the nitro-olefins in the Barton-Zard pyrrole synthesis. ${ }^{14}$ The known bis-sulfone $\mathbf{6}^{15}$ was thought to be a promising substitute for 1 . The bissulfone 6 was treated with ethyl isocyanoacetate and potassium tert-butoxide at room temperature to give the desired pyrrole 2 in 92% yield [equation (1)] as well as a small amount of diphenyl sulfone. Contrary to the reaction of $\mathbf{1}$, retro-DielsAlder reaction of the intermediary bicyclo[2.2.2]octadienyl sulfone partially occurred in this case. This difference could be understood by the substituent effect on the retro-DielsAlder reaction of adducts of 9,10-disubstituted anthracene derivatives with ethyl acrylate. ${ }^{16}$

Preparation of diethyl 2,4,6,8-tetrahydro-4,8-ethanobenzo[1,2$\left.c: 4,5-c^{\prime}\right]$ dipyrrole-1,5-dicarboxylates
Compounds which consist of two pyrrole rings fused with rigid bicycloalkadienes at their β-positions are of considerable interest because these compounds would be promising precursors for spatially fixed porphyrin arrays. ${ }^{17}$ First, we intended to convert the double bond of the adduct 1 to an α, β-unsaturated sulfone moiety according to the reported protocol (Scheme 2). ${ }^{18}$

Scheme 2 Reagents and conditions: i) $\mathrm{PhSCl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}$; ii) MCPBA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt; iii) $\mathrm{CNCH}_{2} \mathrm{CO}_{2} \mathrm{Et}$, DBU, THF, rt; iv) CNCH_{2} $\mathrm{CO}_{2} \mathrm{Et}, \mathrm{KOBu}^{t}$, THF, rt.

Addition of benzenesulfenyl chloride to a diastereomeric mixture of 1 (endolexo $=3 / 2$) occurred smoothly at $-78^{\circ} \mathrm{C}$ to give a mixture of two isomers 7 (endolexo $=3 / 2$) in 83% yield. The stereochemistry of 7 was determined by NOE experiments. In this reaction, the phenylthio group only attacked the double bond of 1 from the exo face. Oxidation of 7 (endolexo $=3 / 2$) with MCPBA afforded 8 (endolexo $=3 / 2$) in 94% yield. Double pyrrole formation of $\mathbf{8}$ was then attempted. However, the reaction of $\mathbf{8}$ with ethyl isocyanoacetate (2.2 equiv.) and potassium tert-butoxide (4.4 equiv.) gave an isomeric mixture of monopyrrole $9(41 \%)$ in a ratio of antilsyn $=3 / 2$. The isomers anti- 9 and $\operatorname{syn}-9$ were separated by column chromatography, and the structures were confirmed by NOE experiments. Reactions of anti-9 and syn-9 with ethyl isocyanoacetate gave the target compounds benzodipyrroles syn-10 and anti-10 in 81% and 78% yield, respectively.

The double bond of $\mathbf{2}$ was also utilized for construction of another pyrrole ring. Thus, the pyrrole 2 was treated with 1.2 mole equivalents of benzenesulfenyl chloride at $-78^{\circ} \mathrm{C}$ to give a regioisomeric mixture of adducts $\mathbf{1 1}$ (81%; Scheme 3) in addition to the α-phenylthio-substituted pyrrole (19%). The

Scheme 3 Reagents and conditions: i) $\mathrm{PhSCl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$; ii) MCPBA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt; iii) DBU, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt; iv) $\mathrm{CNCH}_{2} \mathrm{CO}_{2} \mathrm{Et}, \mathrm{KOBu}^{t}$, THF, rt.
by-product formation was simply avoided by careful addition of one mole equivalent of benzenesulfenyl chloride at $-78^{\circ} \mathrm{C}$ and the target molecule $\mathbf{1 1}$ was obtained in quantitative yield. From NOE experiments, the phenylthio group was confirmed to occupy the endo position in both isomers of 11, and the isomeric ratio of 11 was determined as anti/syn $=4 / 3$. The isomeric mixture of $\mathbf{1 1}$ was converted to a mixture of the α, β unsaturated sulfones 9 (anti/syn $=4 / 3$) in 87% yield by oxidation with MCPBA followed by treatment of the intermediate chloro sulfones $\mathbf{1 2}$ with DBU.

Preparation of ethyl 4,7-dihydro-4,7-methano-2H-isoindole-1carboxylate 14

The reaction of nitro-olefin equivalent 13^{8} with ethyl isocyanoacetate gave the target 4,7-dihydro-4,7-methano- 2 H isoindole 14 in rather low yield (61%; Scheme 4). Careful inspection of the reaction mixture revealed the presence ($\approx 3 \%$) of a by-product, NMR and IR spectra of which showed the presence of one ethyl ester, two nitro and two bicyclo[2.2.2]heptene moieties. The structure of the by-product was finally determined as $\mathbf{1 5}$ by X-ray analysis. As this type of side reaction was not observed in the pyrrole-forming reactions of bicyclo[2.2.2] octene derivatives $\mathbf{1}, \mathbf{8}$ and $\mathbf{9}$, unfavourable sp^{2} hybridization in the bicyclo[2.2.1]heptene framework would retard the elimination of a nitrite anion from an anionic intermediate leading to pyrrole-ring formation (path a), and the Michaeltype addition to another nitronorbornadiene to give 15 would compete (path b).

In order to improve the yield of $\mathbf{1 4}$, we employed tosylnorbornadiene $16{ }^{18}$ and bis(phenylsulfonyl)norbornene 17^{15} as the starting material. The reactions of 16 and 17 with ethyl isocyanoacetate were smoothly promoted by potassium tertbutoxide to give the desired pyrrole 14 in 60% and 56% yield, respectively [equation (2)]. No isolable by-product was obtained in these reactions. Difference between the reactions of nitro and sulfonyl compounds would depend on the balance between nucleofugal and electron-withdrawing natures of nitro and sulfonyl groups.

Preparation of ethyl 4,5,6,7-tetrahydro-4,7-methano-2H-iso-indole-1-carboxylate 19
Hydrogenation under the usual conditions (an atmospheric pressure of $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}$, THF) of $\mathbf{1 4}$ gave $\mathbf{1 9}$ only in 20% yield, and no by-product could be identified by NMR analysis of the reaction mixture. As a certain strain on the norbornadienyl skeleton might promote hydrogenolysis of the skeleton, we decided to prepare the norbornene skeleton first and then to form the pyrrole ring. Thus, the known sulfone $1 \mathbf{1 8}^{19}$ was treated with ethyl isocyanoacetate and 2.4 mole equivalents of potassium tert-butoxide to give the pyrrole 19 in 95% yield (Scheme 5).

Scheme 5 Reagents and conditions: i) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}$, THF, rt; ii) CNCH_{2} $\mathrm{CO}_{2} \mathrm{Et}, \mathrm{KOBu}^{t}$, THF, rt.

Preparation of diethyl 2,4,6,8-tetrahydro-4,8-methanobenzo[1,2$c: 4,5-c^{\prime}$]dipyrroledicarboxylates 23

As complete rearrangement was reported to occur in the reaction of arenesulfenyl chlorides with norbornadiene-fused pyrroles, ${ }^{3 b}$ we chose the adduct $\mathbf{1 3}^{8}$ as the starting material (Scheme 6). A stereoisomeric mixture (endolexo $=2 / 1$) of $\mathbf{1 3}$ was treated with PhSCl . Contrary to the results with 1 described above, no reaction was observed at $-78^{\circ} \mathrm{C}$. Even at room temperature for 48 h , only about half of the starting material $\mathbf{1 3}$ was consumed and a single isomer of $\mathbf{2 0}$ was obtained in 53% yield. NOE experiments revealed the obtained isomer was endo-20. The starting material $\mathbf{1 3}$ almost disappeared after 2 weeks and an isomeric mixture of endo- and exo-20 (endolexo $=5 / 2$) was obtained in 73% yield. Extreme retardation for the addition must be due to the lowered HOMO

Scheme 6 Reagents and conditions: i) $\mathrm{PhSCl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}$; ii) MCPBA, CHCl_{3}, rt; iii) $\mathrm{CNCH}_{2} \mathrm{CO}_{2} \mathrm{Et}$, DBU, MeCN, $55^{\circ} \mathrm{C}$; iv) $\mathrm{CNCH}_{2} \mathrm{CO}_{2} \mathrm{Et}$, KOBu ${ }^{t}$, THF, $55^{\circ} \mathrm{C}$.
energy level of the π-bond by transannular effects of the strongly electron-withdrawing groups at the exo position. ${ }^{20}$ In exo-13, a low lying $\sigma^{*}{ }_{\mathrm{C}-\mathrm{N}(\text { nitro })}$ orbital can effectively interact with the remote π orbital in a through-space fashion ${ }^{21}$ and this greatly decreases the HOMO level, while the $\sigma^{*}{ }_{\text {c-S(sulfone) }}$ orbital can do the same in endo-13. The pure endo-20 was oxidized with MCPBA to give 21 in quantitative yield. In the reaction of 21 with ethyl isocyanoacetate under the usual conditions (DBU, THF, rt), the desired pyrrole formation was not observed and an intractable mixture was formed. When the same reaction was carried out by using DBU in acetonitrile at $55^{\circ} \mathrm{C}$, the bis-phenylsulfonylated pyrrole $\mathbf{2 2}$ was obtained as a single isomer in 15% yield. The stereochemistry of $\mathbf{2 2}$ was determined by NOE experiments. Since DBU was not basic enough to epimerize a carbon bearing a sulfonyl group, no isomerization of $\mathbf{2 2}$ could be expected. Formation of $\mathbf{2 2}$ could be rationalized by the exo attack of a phenylsulfinate anion on an intermediary α, β-unsaturated sulfone (like anti-9), which would be derived from endo-20, followed by protonation from the exo face. Another pyrrole ring formation on 22 with ethyl isocyanoacetate was performed under more severe conditions (potassium tert-butoxide, THF, $55^{\circ} \mathrm{C}$) to give an isomeric mixture of $\mathbf{2 3}$ (antilsyn $=1 / 5$) in 50% yield.
Another route to 23 was examined by starting with the norbornadienyl sulfone 16. ${ }^{19}$ Addition of benzenesulfenyl chloride to $\mathbf{1 6}$ smoothly occurred at $-78^{\circ} \mathrm{C}$ to give adduct $\mathbf{2 4}$ as a single isomer in quantitative yield (Scheme 7). The stereochemistry of $\mathbf{2 4}$ was determined as an isomer bearing the exo-phenylthio group at the syn position by NOE experiments. This stereochemical selectivity was qualitatively understood by considering cationic intermediates derived from the exo attack of a phenylthio cation (Fig. 1): In the syn intermediate (left), hyperconjugative stabilization of the cationic center from the olefinic carbon was expected, while in the anti intermediate (right) such stabilization from the carbon bearing the sulfonyl group was thought to be diminished due to the electronwithdrawing nature of the sulfonyl group. Therefore, the stable syn intermediate would dominate the reaction pathway to

Table 1 Crystallographic data for pyrroles fused with bicycloalkenes

Compound	2	4	5	anti-10	14	15	19	syn-23
Formula	$\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{2}$	$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{INO}_{2}$	$\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{2}$	$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4}$	$\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{2}$	$\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{6}$	$\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{2}$	$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4}$
Formula weight	217.27	345.18	295.39	328.37	203.24	387.40	205.26	314.34
Crystal system	monoclinic	triclinic	triclinic	monoclinic	monoclinic	monoclinic	triclinic	monoclinic
Space group	$P 2_{1} / n$	$P-1$	P-1	C2/c	C2/c	$P 2_{1} / n$	$P-1$	$P 2{ }_{1} / n$
ali̊	8.389(2)	10.366(1)	8.563(2)	10.154(3)	22.057(2)	10.060(2)	9.557(2)	5.612(2)
b/Å	6.518(2)	13.730(2)	15.285(4)	13.488(5)	6.451(2)	19.282(3)	9.576(3)	17.640(2)
clÅ	20.846(2)	9.686(1)	6.317(4)	12.354(7)	18.070(2)	10.397(2)	6.945(2)	16.329(2)
$a\left({ }^{\circ}\right)$	90	90.01(1)	100.97(3)	90	90	90	103.60(2)	90
$\beta\left({ }^{\circ}\right.$	90.71(1)	89.97(9)	93.04(3)	97.39(4)	123.980(5)	114.62(1)	107.95(2)	94.40(2)
$\gamma\left({ }^{\circ}\right)$	90	89.943(9)	97.72(2)	90	90	90	105.87(2)	90
V / \AA^{3}	1139.7(3)	1378.7(3)	801.7(6)	1677(1)	2132.2(7)	1833.3(5)	545.0(3)	1611.8(6)
Z	4	4	2	4	8	4	2	4
μ / cm^{-1}	0.85	22.87	0.74	0.93	0.87	1.06	0.85	0.93
Unique refln.	2837	6682	3919	2006	2439	4380	2495	3707
No. obs. ${ }^{a}$	$1653{ }^{\text {b }}$	4683	2355	930	1732	2736	1860	1705
$R_{\text {int }}$	0.018	0.021	0.024	0.031	0.020	0.031	0.012	0.042
No. var.	150	316	284	$139^{\text {c }}$	169	318	197	241
$R 1{ }^{\text {d }}$	0.070	0.039	0.055	0.064	0.047	0.057	0.039	0.043
R^{e}	$0.079{ }^{\text {f }}$	0.075	0.051	0.074	0.057	0.084	0.056	0.087
$w R 2^{g}$	0.252^{f}	0.110	0.146	0.100	0.134	0.166	0.118	0.140

${ }^{a} I>2 \sigma(I) .{ }^{b} I>\sigma(I) .{ }^{c}$ The methyl group of the ethyl ester moiety is disordered. The ethyl group is treated as an isopropyl group and occupation of the methyl groups is calculated. ${ }^{d} R I=\Sigma\left|F_{\mathrm{o}}-F_{\mathrm{c}} / \Sigma\right| F_{\mathrm{o}} \mid$ for $I>2 \sigma(I)$ data. ${ }^{e} R=\Sigma\left(F_{\mathrm{o}}{ }^{2}-F_{\mathrm{c}}{ }^{2}\right) / \Sigma F_{\mathrm{o}}{ }^{2}$ for all data. ${ }^{f}$ For $I>\sigma(I)$ data. ${ }^{g} w R 2=\left\{\Sigma\left[w\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}^{2}\right)^{2}\right] / \Sigma\left[w\left(F_{\mathrm{o}}^{2}\right)^{2}\right]\right\}^{1 / 2}$ for all data.

Scheme 7 Reagents and conditions: i) $\mathrm{PhSCl}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-7{ }^{\circ} \mathrm{C}$; ii) MCPBA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt; iii) $\mathrm{CNCH}_{2} \mathrm{CO}_{2} \mathrm{Et}, \mathrm{KOBu}^{t}$, THF, rt.

Fig. 1
the observed syn isomer 24. The adduct 24 was converted into sulfone 25 with MCPBA and then to the syn benzodipyrrole syn-23 in 71\% yield.

X-Ray analysis \ddagger

Single crystals of some pyrroles synthesized above were obtained by slow evaporation of solvents. We carried out X-ray analyses of the pyrroles in order to rationalize their selectivity and reactivity, and the crystallographic data are summarized in Table 1. The most distinctive feature of these pyrroles in crystals is the dimeric structure of pyrrole-2-carboxylate moieties linked by two hydrogen bonds between the pyrrolic protons and the carbonyl oxygen atoms except for 14. In the crystal of 14, a polymeric linkage was observed. In all cases, no solvent was included in the crystals.

In all cases, distinctive bond elongation of the pyrrolic $C^{\beta}-C^{\beta}$
\ddagger CCDC reference number 207/487. See http://www.rsc.org/suppdata/ $\mathrm{p} 1 / \mathrm{b} 0 / \mathrm{b} 006584 \mathrm{f} /$ for crystallographic files in .cif format.

Fig. 2
bonds was not observed, probably due to the fact that the double bonds in the pyrrole rings are already localized. Structural features of these pyrroles appeared in the bond angles. Dihedral angles of mean planes of the pyrrole and bicyclic rings and selected valence-bond angles are listed in Table 2. Dihedral angles a of bicyclo[2.2.2]octadiene-fused pyrroles 2 and anti-10 were widened by 1.6° and 2.8° from 120°, respectively, while those of bicyclo[2.2.1]heptadiene-fused pyrroles 14, 19 and syn-23 were narrowed by $7.1^{\circ}, 8.15^{\circ}$ and 6.9°, respectively. Pyramidalization of the β-pyrrolic sp^{2} carbons was observed in all cases: The pyrrole rings are bent in the exo direction by 0.7° and 2.7° in the bicyclo[2.2.2]octadiene-fused pyrroles 2 and anti-10, respectively. On the other hand, in the norbornadiene- and norbornene-fused pyrroles 14, 19 and syn-23, the pyrrole rings incline to endo by $2.6-4.5^{\circ}$. These phenomena are well in accord with those observed and calculated data for various bicycloalkenes. ${ }^{22}$

Thermal analysis of pyrroles fused with a bicyclo[2.2.2]octadiene framework

Thermal behaviour of $\mathbf{2}$, anti-9, syn-10 and anti-10 was examined by differential scanning calorimetric (DSC) and thermogravimetric (TG) analyses. Measurements were performed over the temperature range $100-350{ }^{\circ} \mathrm{C}$. The DSC charts and the calorimetric results are shown in Fig. 3 and Table 3. In the

Table 2 Selected angles (see Fig. 2)

Compound	Dihedral angle (${ }^{\circ}$)				Averaged valence angle (${ }^{\circ}$)		
	a	β	γ	δ	θ^{a}	Ψ^{b}	φ^{c}
2	121.6(3)	119.6(3)	0.7(2)	${ }^{\text {d }}$	106.3	106.0	138.6
4	121.5(3)	119.5(3)	2.5(2)	${ }^{\text {d }}$		$106.8{ }^{\text {e }}$	138.2
	121.6(3)	119.5(3)	2.6(2)	${ }^{\text {d }}$		$106.6{ }^{e}$	138.0
5	121.1(1)	120.6(1)	-0.8(1)	${ }^{\text {d }}$		107.0^{e}	137.9
anti-10	122.8(2)	118.6(2)	$2.7(1)^{f}$		105.9	$104.9^{\text {g }}$	137.5
14	112.9(1)	122.02(8)	-3.4(1)	-4(2)	105.3	97.9	145.3
19	111.85(9)	125.61(6)	-4.50(7)	${ }^{\text {d }}$	106.1	99.2	144.8
syn-23	113.1(1)	123.56(9)	2.6(1)	-2.5(1)	105.2	$97.4{ }^{\text {g }}$	144.3
${ }^{a}\left(\theta^{1}+\theta^{2}\right) / 2 .{ }^{b}\left(\Psi^{1}+\Psi^{2}\right) / 2 .{ }^{c}\left(\varphi^{1}+\varphi^{2}\right) / 2 .{ }^{d}$ Not refined. ${ }^{e}\left(\theta^{1}+\theta^{2}+\varphi^{1}+\varphi^{2}\right) / 4 .{ }^{f} \gamma=\delta .{ }^{g}$ Averaged value of four Ψ_{s}.							

Table 3 Calorimetric results ${ }^{a}$

Compound	Phase transition (melting)				Decomposition			
	$T_{1}\left({ }^{\circ} \mathrm{C}\right)$	$T_{2}\left({ }^{\circ} \mathrm{C}\right)$	$T_{3}\left({ }^{\circ} \mathrm{C}\right)$	$\Delta H\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$	$T_{1}\left({ }^{\circ} \mathrm{C}\right)$	$T_{2}\left({ }^{\circ} \mathrm{C}\right)$	$T_{3}\left({ }^{\circ} \mathrm{C}\right)$	$\Delta H\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
2	127.0	128.6	130.6	45.4	152.9	220.6	239.6	$64.1{ }^{\text {b }}$
anti-9	177.0	180.1	186.1	29.8	196.5	237.5	260.0	20.4
					264.8	285.0	298.8	2.6
syn-10	159.4	166.1	169.6	18.2	239.8	306.3	322.5	$25.7{ }^{\text {b }}$
anti-10	268.1	273.1	275.4	c	243.1	308.5	318.4	c

${ }^{a}$ DSC measurements were performed under the following conditions: scan rate, $10^{\circ} \mathrm{C} \mathrm{min}^{-1}$; sampling period, 1 s ; scan range, $100-350{ }^{\circ} \mathrm{C}$. T_{1}, T_{2} and T_{3} denote temperatures of start, top and end of a peak, respectively. ${ }^{b}$ The value was calculated by using the relative molecular mass of the starting material. ${ }^{c}$ The two peaks overlapped, and the ΔH-values were not calculated.

Fig. 3 DSC curves (a): 2; (b): anti-9; (c): syn-10; (d): anti-10.
cases of $\mathbf{2}$ and syn-10, sharp endothermic peaks corresponding to phase transition (mp) and broad endothermic peaks of decomposition were observed in the heating process, while these two peaks overlapped in the case of anti-10, and two broad endothermic decomposition peaks were observed in the case of anti-9. The decomposition peaks started at $\approx 153{ }^{\circ} \mathrm{C}$ for 2, 197 and $265^{\circ} \mathrm{C}$ for anti-9, $240^{\circ} \mathrm{C}$ for syn- 10 and $243^{\circ} \mathrm{C}$ for anti-10. Although no compound was identified in the proton NMR spectra of any of these samples after the experiments, the decomposition peaks of $\mathbf{2}$ and anti-9 must correspond to loss of ethylene in the retro-Diels-Alder fashion.

Next, we carried out TG experiments in order to elucidate the decomposition process. In the decomposition of anti-9, 8% and 28% of weight was lost after the first and second decomposition peaks, respectively. The first peak corresponded to loss of an
ethylene molecule and the second corresponded to loss of ethylene and carbon dioxide molecules. In the case of $\mathbf{2}$, all the sample disappeared after the second peak. This means the peak involves evaporation of $\mathbf{2}$ or the decomposed material and this is the reason for the extremely high ΔH-value during the decomposition compared with others. In order to confirm that this peak involved the extrusion of an ethylene molecule in retro-Diels-Alder fashion, we decided to identify the decomposition product of $\mathbf{2}$ [equation (3)]. Diphenyl ether was chosen as a decomposition medium because of its $\mathrm{bp}\left(259^{\circ} \mathrm{C}\right)$ and the pyrrole 2 was refluxed under argon. From TLC monitoring of the reaction, a brightly fluorescent spot appeared at $R_{\mathrm{f}} 0.55$ $\left(\mathrm{CHCl}_{3}\right)$. To avoid further decomposition of this material, we stopped the pyrrolysis for 1 h , even though most of the starting material 2 remained. Chromatography on silica gel afforded the isoindole 26 which was contaminated with phthalimide in $\approx 15 \%$ yield. $2 H$-Isoindoles bearing an electronwithdrawing group at the 1 - and/or 3-position are known to be fairly stable toward aerial oxidation. ${ }^{23}$ As extrusion of the ester moiety from the isoindole anti-9 started at around $265^{\circ} \mathrm{C}$, formation of 2 H -isoindole from 26 would be possible. Therefore, phthalimide must be formed by the oxidation of 26 with trace oxygen present in the reaction medium or by the oxidation of 2 H -isoindole during the work-up manipulation. We concluded that extrusion of ethylene from 2 took place to form 26 and then 26 evaporated or decomposed to $2 H$ isoindole, which simultaneously evaporated, in the decomposition peak of $\mathbf{2}$.

The decomposition of $\mathbf{1 0}$ was determined to involve the loss of ethyl ester moieties by TG analysis: over 52% loss of weight corresponding to the extrusion of three molecules of ethylene

27

29

Fig. 4
and two molecules of carbon dioxide was observed during the decomposition. There are two possible routes in the extrusion of ethylene from the bicyclooctadiene skeleton of 10. Extrusion of ethylene from the bridging ethano moiety of $\mathbf{1 0}$ would give an unfavourable diradical or Dewar structure 27 or $\mathbf{2 8}$, which then would isomerize to a novel heterocyclic ring system, 1,6-dihydrobenzo[1,2-c:4,5-c']dipyrrole 30 (Fig. 4). Tautomerism between pyrrole and pyrrolenine in 10 would give 29 , which would then undergo decomposition under pyrolytic conditions to give 30. However, the energy cost of the transformation from pyrrole to pyrrolenine is over $70 \mathrm{~kJ} \mathrm{~mol}^{-1}$. ${ }^{24}$ Both the possible decomposition routes in the loss of ethylene involve high-energy-costing steps. This would be one of the reasons for the apparent lack of formation of identifiable products in the pyrrolysis of $\mathbf{1 0}$.

Conclusions

We have achieved the synthesis of various pyrroles fused with rigid bicyclo[2.2.2]- and bicyclo[2.2.1]alkenes at the β-positions starting from Diels-Alder adducts of cyclohexadiene and cyclopentadiene with 2-nitro-1-(phenylsulfonyl)ethylene, 1,2 bis(phenylsulfonyl)ethylene and tosylacetylene. These pyrroles would be promising precursors for preparations of novel materials such as porphyrin arrays, organic conductive materials, and fluorescent dyes, which have largely extended or loosely interacting π-systems. Studies along this line are underway in our laboratories.

Experimental

General

Mps were measured on a Yanagimoto micromelting point apparatus and are uncorrected. NMR spectra were obtained with a JEOL GSX-270 or EX-400 spectrometer at ambient temperature by using CDCl_{3} as solvent, and tetramethylsilane as internal standard for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$. Coupling constants (J-values) are given in Hz. Mass spectra were measured with a Hitachi M80B spectrometer under EI (electron impact, 20 eV) conditions. DSC and TG experiments were performed on a Seiko Instruments EXSTAR 6000 apparatus. All X-ray measurements were made at $25^{\circ} \mathrm{C}$ on a Rigaku AFC5R diffractometer with graphite-monochromated $\mathrm{Mo}-\mathrm{K} \alpha$ radiation and a 12 kW rotating-anode generator. THF and ether were distilled from sodium benzophenone ketyl, and dichloromethane was distilled from CaH_{2} prior to use. DMF was distilled under reduced pressure and then stored over molecular sieves (MS) $4 \AA$ Å. Pyridine, hexane and diphenyl ether were distilled from CaH_{2} and stored over MS $4 \AA$. Acetonitrile was distilled from $\mathrm{P}_{2} \mathrm{O}_{5}$ and then from CaH_{2}, and stored over MS $4 \AA$. Potassium tert-butoxide was sublimed at $200^{\circ} \mathrm{C}$ under reduced pressure $(\approx 0.1 \mathrm{mmHg})$ and then dissolved in dry THF $(1.0 \mathrm{~mol}$ L^{-1}). Ethyl isocyanoacetate was prepared according to the literature procedure. ${ }^{25}$ Benzenesulfenyl chloride ${ }^{26}$ was prepared from thiophenol and sulfuryl dichloride in hexane in the presence of a catalytic amount of triethylamine, distilled under
reduced pressure ($50^{\circ} \mathrm{C} / 4 \mathrm{mmHg}$), and stored under nitrogen in a refrigerator. Other commercially available materials were used without further purification.

General procedures

DBU method for pyrrole formation. To a stirred solution of a nitro compound and ethyl isocyanoacetate (1.1 equiv.) in dry THF or dry MeCN ($0.07 \mathrm{~mol} \mathrm{~L}^{-1}$) was added DBU (2.2 equiv.) by syringe at room temperature under argon. After disappearance of the starting nitro compound had been checked by TLC ($8-12 \mathrm{~h}$), the reaction was quenched by adding 5% aq. HCl . The mixture was extracted three times with chloroform or ethyl acetate. The organic extract was washed successively with saturated aq. NaHCO_{3} and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was chromatographed on silica gel.

Potassium tert-butoxide method for pyrrole formation. Ethyl isocyanoacetate (1.2 equiv.) was added to a 1.0 M solution of potassium tert-butoxide in THF (1.4 equiv.) by a syringe at $0^{\circ} \mathrm{C}$ under argon. To the stirred suspension of an anion of isocyanoacetate was added a solution of a sulfone in dry THF $\left(0.1 \mathrm{~mol} \mathrm{~L}^{-1}\right)$ at the same temperature, and then the mixture was stirred at room temperature. After disappearance of the starting sulfone had been checked by TLC (within 2 h in most cases), the reaction was quenched by adding 5% aq. HCl . The mixture was extracted three times with chloroform or ethyl acetate. The organic extract was washed successively with saturated aq. NaHCO_{3} and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was chromatographed on silica gel.

Addition of benzenesulfenyl chloride. To a stirred solution of an olefin in dry dichloromethane ($0.1 \mathrm{~mol} \mathrm{~L}^{-1}$) was added benzenesulfenyl chloride (1.0 equiv.) by syringe at $-78^{\circ} \mathrm{C}$ under argon, and then the mixture was warmed to room temperature. After disappearance of the starting olefin had been checked by TLC (within 4 h in most cases), the solvent was removed in vacuo. The residual material was purified by recrystallization or chromatography on silica gel.

Oxidation of sulfide to sulfone. To a stirred solution of sulfide in dry dichloromethane or chloroform $\left(0.1 \mathrm{~mol}^{-1}\right)$ was added MCPBA (2.4 equiv.) at $0^{\circ} \mathrm{C}$. After the mixture had been stirred for 2 h at room temperature, aq. NaHSO_{3} was added. The mixture was extracted three times with ethyl acetate. The organic extract was washed successively with aq. NaHCO_{3} and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residual material was purified by recrystallization or chromatography on silica gel.

Elimination of $\mathbf{H C l}$ from $\boldsymbol{\beta}$-chloro sulfone. To a solution of a β-chloro sulfone in dry pyridine or dichloromethane ($0.5 \mathrm{~mol} \mathrm{~L}^{-1}$) was added DBU (1.2 equiv.) by syringe at room temperature. After $30 \mathrm{~min}, 2 \% \mathrm{aq} . \mathrm{HCl}$ was added and then the mixture was extracted with ethyl acetate. The organic extract was washed successively with water, saturated aq. NaHCO_{3} and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residual material was purified by recrystallization or chromatography on silica gel.

Hydrogenation. Palladium on charcoal ($10 \% \mathrm{w} / \mathrm{w}$) in THF was activated three times by evacuation followed by filling with hydrogen. To the activated suspension of Pd / C was added a solution of a compound in THF under one atmospheric pressure of hydrogen and the mixture was rigorously stirred overnight. After the catalyst had been removed by filtration through Celite, the solvent was removed in vacuo. The residual material was purified by recrystallization or chromatography on silica gel.
($1 S^{*}, 2 R^{*}, 3 R^{*}, 4 R^{*}, 5 R^{*}, 6 R^{*}$)-2-Chloro-5-nitro-6-(phenyl-sulfonyl)-3-phenylthiobicyclo[2.2.2]octane (endo-7) and $\left(1 S^{*}, 2 R^{*}, 3 R^{*}, 4 R^{*}, 5 R^{*}, 6 R^{*}\right)$-2-chloro-6-nitro-5-phenylsulfonyl-3-(phenylthio)bicyclo[2.2.2]octane (exo-7)

The reaction of 1 (endolexo $=3 / 2 ; 0.206 \mathrm{~g}, 0.71 \mathrm{mmol}$) with benzenesulfenyl chloride (0.71 mmol) followed by recrystallization from diethyl ether-hexane gave $0.258 \mathrm{~g}(83 \%)$ of the title compounds (endolexo $=3 / 2$) as colourless crystals, $\mathrm{mp} 153-154^{\circ} \mathrm{C}$ (endo: exo $=3: 2$) (Found: C, 54.82; H, 4.55; $\mathrm{N}, 3.22 . \mathrm{C}_{20} \mathrm{H}_{20} \mathrm{ClO}_{4} \mathrm{~S}_{2}$ requires $\mathrm{C}, 54.85 ; \mathrm{H}, 4.60 ; \mathrm{N}, 3.20 \%$); $R_{\mathrm{f}} 0.55(30 \% \mathrm{EtOAc}-$ hexane $) ; \delta_{\mathrm{H}}$ endo-7 $1.61\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}^{7}\right), 1.69$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}^{8}\right), 2.22\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}^{8}\right), 2.41\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}^{7}\right), 2.60(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{H}^{4}\right), 2.66\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}^{1}\right), 3.33\left(1 \mathrm{H}, \mathrm{dt}, J 5.9\right.$ and $\left.2.0, \mathrm{H}^{3}\right), 3.89(1 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{H}^{2}\right), 4.66\left(1 \mathrm{H}, \mathrm{dt}, J 7.3\right.$ and $\left.1.7, \mathrm{H}^{6}\right), 5.15(1 \mathrm{H}, \mathrm{dd}, J 7.3$ and $\left.2.4, \mathrm{H}^{5}\right), 7.2-7.75(8 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.90(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$; exo- 7 $1.41\left(1 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{H}^{8}\right), 1.63\left(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{H}^{7}\right), 2.20\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}^{8}\right)$, $2.30\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}^{4}\right), 2.74\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}^{1}\right), 3.89\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}^{2}\right), 4.17(1 \mathrm{H}$, dd, $J 8.0$ and $\left.1.3, \mathrm{H}^{5}\right), 4.33\left(1 \mathrm{H}, \mathrm{dt}, J 6.8\right.$ and $\left.2.0, \mathrm{H}^{3}\right), 5.59(1 \mathrm{H}$, $\mathrm{dd}, J 7.8$ and $\left.1.5, \mathrm{H}^{6}\right), 7.2-7.75(8 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.90(2 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH}) ; \delta_{\mathrm{C}}$ (Signals could not be assigned for the isomers and the DEPT results are shown in the parentheses) $17.5(\mathrm{t}), 18.9(\mathrm{t})$, 19.2 (t), 19.6 (t), 31.6 (d), 36.0 (d), 37.9 (d), 42.6 (d), 51.3 (d), 51.6 (d), 58.3 (d), 60.7 (d), 62.3 (d), 63.3 (d), 78.4 (d), 83.0 (d), 128.1 (d), 128.3 (d), 128.4 (d), 128.4 (d), 129.3 (d), 129.4 (d), 129.6 (d), 129.7 (d), 131.8 (d), 132.3 (s), 132.7 (s), 132.9 (d), 134.5 (d), 134.7 (d), 136.7 (s) and 137.4 (s); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}$ $1560,1550,1371,1317,1305,1149$ and $754 ; \mathrm{m} / \mathrm{z}(\%) 439$ $\left[\mathrm{M}^{+}\left({ }^{37} \mathrm{Cl}\right), 2\right], 437\left[\mathrm{M}^{+}\left({ }^{35} \mathrm{Cl}\right), 6\right], 401$ (20), 355 (100), 260 (35), 186 (41) and 170 (44).

$\left(1 S^{*}, 2 R^{*}, 3 R^{*}, 4 R^{*}, 5 R^{*}, 6 R^{*}\right)$-2-Chloro-5-nitro-3,6-bis(phenylsulfonyl)bicyclo[2.2.2]octane (endo-8) and ($1 S^{*}, 2 R^{*}, 3 R^{*}, 4 R^{*}$, $5 R^{*}, 6 R^{*}$)-2-chloro-6-nitro-3,5-bis(phenylsulfonyl)bicyclo[2.2.2]octane (exo-8)

The oxidation of 7 (endolexo $=3 / 2 ; 0.191 \mathrm{~g}, 0.436 \mathrm{mmol}$) according to the general procedure followed by recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-diethyl ether-hexane gave $0.193 \mathrm{~g}(94 \%)$ of the title compounds (endolexo $=3 / 2$) as colourless crystals, mp $210-212{ }^{\circ} \mathrm{C}$ (Found: C, 51.02; H, 4.32; N, 2.95. $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{ClNO}_{6} \mathrm{~S}_{2}$ requires $\mathrm{C}, 51.12 ; \mathrm{H}, 4.29 ; \mathrm{N}, 2.96 \%) ; R_{\mathrm{f}} 0.45(40 \% \mathrm{EtOAc}-$ hexane); δ_{H} endo-8 $1.64\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}^{7}\right), 1.75\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}^{8}\right), 2.3-2.5$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}^{7}\right.$ and $\left.\mathrm{H}^{8}\right), 2.77\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}^{4}\right), 3.22\left(1 \mathrm{H}, \mathrm{d}, J 5.9, \mathrm{H}^{3}\right)$, $3.32\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}^{1}\right), 4.53\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}^{2}\right.$ and $\left.\mathrm{H}^{6}\right), 5.13(1 \mathrm{H}, \mathrm{dd}, J 6.8$ and $\left.2.9, \mathrm{H}^{5}\right)$ and $7.5-8.0(10 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$; exo-8 $1.47(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{H}^{8}\right), 1.7-1.9\left(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{H}^{7}\right), 2.22\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}^{8}\right), 2.85(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{H}^{4}\right), 3.07\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}^{1}\right), 5.17\left(1 \mathrm{H}, \mathrm{dd}, J 7.5\right.$ and $\left.1.7, \mathrm{H}^{5}\right), 4.42$ $\left(1 \mathrm{H}, \mathrm{dt}, J 6.7\right.$ and $\left.1.5, \mathrm{H}^{3}\right), 4.17\left(1 \mathrm{H}\right.$, dd, $J 6.7$ and $\left.2.6, \mathrm{H}^{2}\right), 5.48$ $\left(1 \mathrm{H}, \mathrm{d}, J 7.5, \mathrm{H}^{6}\right), 7.2-7.75(8 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.90(2 \mathrm{H}, \mathrm{m}$, ArH); $\delta_{\mathrm{C}} 18.4$ (endo), 18.8 (exo), 19.4 (endo), 20.0 (exo), 27.6 (exo), 33.5 (endo), 35.9 (endo), 42.5 (exo), 53.8 (exo), 55.1 (endo), 58.5 (endo), 63.3 (exo), 65.8 (exo), 66.5 (endo), 78.2 (exo), 83.0 (endo), 128.3, 128.5, 128.6, 128.7, 129.6, 129.6, $129.8,129.9,134.5,134.7,134.9,135.0,136.5,137.2,137.9$ and 138.3; $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1558,1323,1298,1151,725$ and 609; $m / z(\%) 469\left[\mathrm{M}^{+}\left({ }^{35} \mathrm{Cl}\right), 1\right], 434$ (28), 328 (21), 281 (30), 186 (68), 141 (61) and 125 (100).

Ethyl 6-phenylsulfonyl-4,7-dihydro-4,7-ethano-2H-isoindole-1carboxylate (syn-9) and ethyl 5-phenylsulfonyl-4,7-dihydro-4,7-ethano-2H-isoindole-1-carboxylate (anti-9)
The reaction of $\mathbf{8}$ (endolexo $=3 / 2 ; 0.174 \mathrm{~g}, 0.371 \mathrm{mmol}$) with ethyl isocyanoacetate $(0.096 \mathrm{~mL}, 0.88 \mathrm{mmol})$ was carried out according to the general procedure. Chromatographic purification gave $0.050 \mathrm{~g}(41 \%)$ of 9 as a mixture of isomers (anti/syn $=$ $3 / 2$). Separation of the isomers was performed by preparative gel permeation chromatography and recrystallization.

The title compounds (syn/anti $=3 / 4 ; 0.642 \mathrm{~g}, 94 \%$) were also prepared by dehydrochlorination of $\mathbf{1 2}$ (syn/anti $=3 / 4 ; 0.755 \mathrm{~g}$,
$1.92 \mathrm{mmol})$ according to the general procedure. syn-9: colourless crystals, mp $52-54^{\circ} \mathrm{C} ; R_{\mathrm{f}} 0.4(40 \% \mathrm{EtOAc}-$ hexane $) ; \delta_{\mathrm{H}} 1.29$ $(3 \mathrm{H}, \mathrm{t}, J 7.0), 1.57(2 \mathrm{H}, \mathrm{m}), 1.63(2 \mathrm{H}, \mathrm{m}), 4.13\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}^{4}\right)$, $4.05-4.25(2 \mathrm{H}, \mathrm{m}), 4.66\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}^{7}\right), 6.57\left(1 \mathrm{H}, \mathrm{d}, J 2.5, \mathrm{H}^{3}\right)$, $7.44(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.54\left(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}\right.$ and $\left.\mathrm{H}^{5}\right), 7.79(2 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH})$ and $8.47\left(1 \mathrm{H}\right.$, br s, NH); $\delta_{\mathrm{C}} 14.4,26.7,26.9,34.6$ (2C), $60.1,113.6,114.5,127.6,128.7,128.9,133.0,133.3,140.0$, $146.3,147.9$ and $161.1 ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3452,1691,1602$, 1315, 1302 and 1151. anti-9 colourless crystals, $\mathrm{mp} 236-238^{\circ} \mathrm{C}$ (Found: C, 63.44; H, 5.33; N, 3.83. $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{~S}$ requires C , 63.85; H, 5.36; N, 3.92\%); $R_{\mathrm{f}} 0.45$ ($40 \% \mathrm{EtOAc}-$-hexane); $\delta_{\mathrm{H}} 1.37$ $(3 \mathrm{H}, \mathrm{t}, J 7.0), 1.47(2 \mathrm{H}, \mathrm{m}), 1.61(2 \mathrm{H}, \mathrm{m}), 4.19\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}^{4}\right), 4.31$ $(2 \mathrm{H}, \mathrm{m}), 4.61\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}^{7}\right), 6.44\left(1 \mathrm{H}, \mathrm{d}, J 2.4, \mathrm{H}^{3}\right), 7.49(3 \mathrm{H}, \mathrm{m}$, $2 \times \mathrm{ArH}$ and $\left.\mathrm{H}^{6}\right), 7.58(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.82(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $8.51(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}} 14.5,26.1,27.6,34.0,34.9,60.2,113.2$, $114.8,127.3,128.9,129.1,133.1,133.5,139.8,145.5,148.5$ and $161.1 ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3307,1689,1323,1299,1292,1155$, 1145,730 and $579 ; m / z(\%) 329\left(\mathrm{M}^{+}, 100\right), 283(24), 216(9)$ and 158 (11).

Diethyl 2,4,6,8-tetrahydro-4,8-ethanobenzo[1,2-c:4,5-c']di-pyrrole-1,7-dicarboxylate (syn-10)

The title compound ($194 \mathrm{mg}, 81 \%$) was prepared from anti-9 ($261 \mathrm{mg}, 0.73 \mathrm{mmol}$) according to the potassium tert-butoxide procedure. syn-10: colourless crystals, $\mathrm{mp} 168-170{ }^{\circ} \mathrm{C} ; R_{\mathrm{f}} 0.45$ $(40 \% \mathrm{EtOAc}-$ hexane $) ; \delta_{\mathrm{H}} 1.40(6 \mathrm{H}, \mathrm{t}, J 7.0), 1.68(2 \mathrm{H}, \mathrm{m}), 1.74$ $(2 \mathrm{H}, \mathrm{m}), 4.24\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}^{4}\right), 4.34(4 \mathrm{H}, \mathrm{q}, J 7.0), 5.28\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}^{8}\right)$, $6.62\left(2 \mathrm{H}, \mathrm{d}, J 2.9, \mathrm{H}^{3}\right.$ and $\left.\mathrm{H}^{5}\right)$ and $8.77(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}} 14.8$, $28.4,29.7,31.1,31.8,60.2,113.7,115.3,132.0,135.8$ and 162.2 ; $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3319,1674,1419,1321,1271,1147,1093$ and 1045; m/z (\%) 328 ($\mathrm{M}^{+}, 0.9$), 300 (98), 254 (100), 208 (41) and 180 (5).

Diethyl 2,4,6,8-tetrahydro-4,8-ethanobenzo[1,2-c:4,5-c']di-pyrrole-1,5-dicarboxylate (anti-10)

The title compound ($84 \mathrm{mg}, 78 \%$) was prepared from syn-9 ($118 \mathrm{mg}, 0.33 \mathrm{mmol}$) according to the potassium tert-butoxide procedure. anti-10: colourless crystals, mp $264-266^{\circ} \mathrm{C}$ (decomp.) (Found: C, 65.68; H, 6.25; N, 8.32. $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires $\mathrm{C}, 65.84 ; \mathrm{H}, 6.14 ; \mathrm{N}, 8.53 \%) ; R_{\mathrm{f}} 0.5(40 \% \mathrm{EtOAc}-$ hexane); $\delta_{\mathrm{H}} 1.38(6 \mathrm{H}, \mathrm{t}, J 7.3), 1.72(4 \mathrm{H}, \mathrm{m}), 4.32(4 \mathrm{H}, \mathrm{m}), 4.77$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}^{4}\right.$ and $\left.\mathrm{H}^{8}\right), 6.68\left(2 \mathrm{H}, \mathrm{d}, J 1.5, \mathrm{H}^{3}\right.$ and $\left.\mathrm{H}^{7}\right)$ and 8.47 ($2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}$); $\delta_{\mathrm{C}} 14.5,28.7,31.1,59.9,113.9,114.4,130.9$, 136.7 and $161.6 ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3307,1670,1419,1325,1298$, 1149 and 1034; m/z (\%) 328 ($\mathrm{M}^{+}, 1.3$), 300 (98), 254 (100), 208 (37) and 181 (6).

Ethyl $\left(4 R^{*}, 5 R^{*}, 6 R^{*}, 7 S^{*}\right)$-5-chloro-6-phenylthio-4,5,6,7-tetra-hydro-4,7-ethano-2H-isoindole-1-carboxylate (syn-11) and ethyl $\left(4 R^{*}, 5 S^{*}, 6 S^{*}, 7 S^{*}\right)$-6-chloro-5-phenylthio-4,5,6,7-tetrahydro-4,7-ethano-2H-isoindole-1-carboxylate (anti-11)
The reaction of $2(0.765 \mathrm{~g}, 3.52 \mathrm{mmol})$ with benzenesulfenyl chloride ($0.509 \mathrm{~g}, 0.415 \mathrm{~mL}, 3.52 \mathrm{mmol}$) followed by trituration with diethyl ether-hexane gave $1.261 \mathrm{~g}(99 \%)$ of an isomeric mixture (syn:anti=3:4) of the title compounds. The antiisomer could be isolated by a combination of chromatography on silica gel $(20 \% \mathrm{EtOAc}$-hexane) and recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-diethyl ether-hexane. anti-11: colourless crystals, mp $110-111{ }^{\circ} \mathrm{C}$ (Found: C, 62.94; H, 5.57; N, 3.86. $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{ClNO}_{2} \mathrm{~S}$ requires: C, $63.06 ; \mathrm{H}, 5.57 ; \mathrm{N}, 3.87 \%) ; R_{\mathrm{f}} 0.55(30 \% \mathrm{EtOAc}-$ hexane); $\delta_{\mathrm{H}} 1.34(3 \mathrm{H}, \mathrm{t}, J 7.3), 1.35(1 \mathrm{H}, \mathrm{m}), 1.50(1 \mathrm{H}, \mathrm{m}), 1.89$ $(1 \mathrm{H}, \mathrm{m}), 2.34(1 \mathrm{H}, \mathrm{m}), 3.13(1 \mathrm{H}, \mathrm{m}), 3.56(1 \mathrm{H}, \mathrm{m}), 3.75(1 \mathrm{H}$, $\mathrm{m}), 3.84(1 \mathrm{H}, \mathrm{m}), 4.32(2 \mathrm{H}, \mathrm{m}), 6.76\left(1 \mathrm{H}, \mathrm{d}, J 2.4, \mathrm{H}^{3}\right), 7.2-7.3$ $(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.44(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $9.39(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH})$; $\delta_{\mathrm{C}} 14.5,19.5,27.0,34.1,36.8,58.2,60.2,65.2,115.8,116.4$, 124.7, 127.1, 129.0, 130.3, 131.8, 134.7 and 161.3; $v_{\max }(\mathrm{KBr}) /$ $\mathrm{cm}^{-1} 3305,1676,1431,1317,1292,1149$, and 594; m / z (\%) 363 $\left[\mathrm{M}^{+}\left({ }^{37} \mathrm{Cl}\right), 5\right], 361\left[\mathrm{M}^{+}\left({ }^{35} \mathrm{Cl}\right), 13\right], 252$ (13), 216 (37) and 190
(100). syn-11 $R_{\mathrm{f}} 0.5\left(30 \%\right.$ EtOAc-hexane); $\delta_{\mathrm{H}} 1.21(3 \mathrm{H}, \mathrm{t}, J 7.3)$, $1.36(1 \mathrm{H}, \mathrm{m}), 1.53(1 \mathrm{H}, \mathrm{m}), 1.82(1 \mathrm{H}, \mathrm{m}), 2.32(1 \mathrm{H}, \mathrm{m}), 3.22$ $(1 \mathrm{H}, \mathrm{m}), 3.56(1 \mathrm{H}, \mathrm{m}), 3.69(1 \mathrm{H}, \mathrm{m}), 3.75(1 \mathrm{H}, \mathrm{m}), 4.2-4.4(2 \mathrm{H}$, m), $6.72\left(1 \mathrm{H}, \mathrm{d}, J 2.4, \mathrm{H}^{3}\right), 7.2-7.3(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.47(2 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH})$ and $9.39(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}} 14.2,18.9,26.4,34.0,36.6$, $58.2,60.0,65.1,115.0,117.6,125.4,127.1,128.8,129.7,132.0$, 134.6 and 161.7.

Ethyl ($4 R^{*}, 5 R^{*}, 6 R^{*}, 7 S^{*}$)-5-chloro-6-phenylsulfonyl-4,5,6,7-tetrahydro-4,7-ethano- 2 H -isoindole-1-carboxylate (syn-12) and ethyl ($4 R^{*}, 5 S^{*}, 6 S^{*}, 7 S^{*}$)-6-chloro-5-phenylsulfonyl-4,5,6,7-tetrahydro-4,7-ethano-2H-isoindole-1-carboxylate (anti-12)

The oxidation of $2(0.745 \mathrm{~g}, 2.06 \mathrm{mmol})$ followed by trituration with diethyl ether-hexane gave $0.755 \mathrm{~g}(93 \%)$ of an isomeric mixture (syn:anti=3:4) of the title compounds. The pure anti-isomer was obtained by the oxidation of anti-11. anti-12: colourless crystals, mp $180-181^{\circ} \mathrm{C}$ (Found: C, 57.65; H, 4.98; $\mathrm{N}, 3.44 . \mathrm{C}_{19} \mathrm{H}_{20} \mathrm{ClNO}_{4} \mathrm{~S}$ requires C, 57.94; H, 5.12; N, 3.56\%); $R_{\mathrm{f}} 0.25\left(30 \%\right.$ EtOAc-hexane); $\delta_{\mathrm{H}} 1.36(3 \mathrm{H}, \mathrm{t}, J 7.0), 1.41(1 \mathrm{H}$, $\mathrm{m}), 1.52(1 \mathrm{H}, \mathrm{m}), 1.90(1 \mathrm{H}, \mathrm{m}), 2.28(1 \mathrm{H}, \mathrm{m}), 3.48(1 \mathrm{H}, \mathrm{m}), 3.78$ $(1 \mathrm{H}, \mathrm{m}), 3.81(1 \mathrm{H}, \mathrm{m}), 4.19(1 \mathrm{H}, \mathrm{m}), 4.33(2 \mathrm{H}, \mathrm{m}), 6.73(1 \mathrm{H}, \mathrm{d}$, $\left.J 2.4, \mathrm{H}^{3}\right), 7.54(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.65(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.82(2 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH})$ and $8.93(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}} 14.5,18.6,27.8,28.4,36.8$, $57.0,60.2,73.2,115.6,115.9,123.2,128.7,129.2,129.4,133.9$, 138.5 and 161.1; $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3307,1609,1429,1330,1105$, 740 and 690; m/z (\%) 395 [$\left.\mathrm{M}^{+}\left({ }^{37} \mathrm{Cl}\right), 6\right], 393$ [$\left.\mathrm{M}^{+}\left({ }^{35} \mathrm{Cl}\right), 20\right], 348$ (3), 254 (26), 252 (100), 206 (36) and 190 (62). syn- $12 R_{\mathrm{f}} 0.25$ (30% EtOAc-hexane); $\delta_{\mathrm{H}} 1.41$ ($3 \mathrm{H}, \mathrm{t}, J 7.0$), $1.3-1.6(2 \mathrm{H}, \mathrm{m})$, $1.90(1 \mathrm{H}, \mathrm{m}), 2.28(1 \mathrm{H}, \mathrm{m}), 3.29(1 \mathrm{H}, \mathrm{m}), 3.53(1 \mathrm{H}, \mathrm{m}), 4.13$ $(1 \mathrm{H}, \mathrm{m}), 4.24(1 \mathrm{H}, \mathrm{m}), 4.35(2 \mathrm{H}, \mathrm{m}), 6.67\left(1 \mathrm{H}, \mathrm{d}, J 2.9, \mathrm{H}^{3}\right), 7.51$ $(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.63(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.86(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and 9.30 $(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}} 14.4,19.2,27.1,28.9,36.6,56.9,60.0,73.0$, $115.0,116.6,124.2,128.9,129.1,130.2,133.7,137.9$ and 161.7.

Ethyl 4,5,6,7-tetrahydro-4,7-methano-2 H -isoindole-1-carboxylate 19

The title compound was obtained in 95% yield from 18 (4.05 $\mathrm{g}, 15 \mathrm{mmol}$) according to the modified general procedure using 2.4 equiv. of potassium tert-butoxide. 19: colourless crystals, mp 114-116 ${ }^{\circ} \mathrm{C}$ (Found: C, $70.10 ; \mathrm{H}, 7.50$; N, 6.75. $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{2}$ requires C, $70.22 ; \mathrm{H}, 7.37 ; \mathrm{N}, 6.82 \%) ; R_{\mathrm{f}} 0.55\left(\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}} 1.17$ $(2 \mathrm{H}, \mathrm{m}), 1.35(3 \mathrm{H}, \mathrm{t}, J 7.3), 1.63(1 \mathrm{H}, \mathrm{m}), 1.87(3 \mathrm{H}, \mathrm{m}), 3.28$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}^{4}\right), 3.58\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}^{7}\right), 4.31(2 \mathrm{H}, \mathrm{m}), 6.52(1 \mathrm{H}, \mathrm{d}, J 2.4$, H^{3}) and $8.51(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}} 14.5,28.0,28.7,38.4,39.3,51.9$, $59.8,112.2,113.1,135.3,141.0$ and $161.7 ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1}$ $3305,1685,1415,1323,1138$ and 1107; m/z (\%) $205\left(\mathrm{M}^{+}, 99\right)$, 190 (13), 177 (100), 159 (65), 132 (49), 131 (70) and 104 (100).

($1 S^{*}, 2 R^{*}, 3 R^{*}, 4 R^{*}, 5 R^{*}, 6 R^{*}$)-2-Chloro-5-nitro-6-phenyl-sulfonyl-3-(phenylthio)bicyclo[2.2.1]heptane (endo-20) and ($1 S^{*}, 2 R^{*}, 3 R^{*}, 4 R^{*}, 5 R^{*}, 6 R^{*}$)-2-chloro-6-nitro-5-phenyl-sulfonyl-3-(phenylthio)bicyclo[2.2.1] heptane (exo-20)

The reaction of $\mathbf{1 3}$ (endolexo $=2 / 1 ; 1.754 \mathrm{~g}, 6.30 \mathrm{mmol}$) was carried out according to the general procedure. After 48 h , the reaction mixture was concentrated and the residue was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-diethyl ether-hexane to give 1.409 g (53%) of pure endo-20. The reaction of $\mathbf{1 3}$ (endolexo $=2 / 1$; $0.558 \mathrm{~g}, 2.0 \mathrm{mmol}$) was carried out according to the general procedure. After 14 days, the reaction mixture was concentrated and the residue was chromatographed on silica gel (20% EtOAc-hexane) to give $0.620 \mathrm{~g}(73 \%)$ of $\mathbf{2 0}$ as a mixture of isomers (endolexo $=5 / 2$). Isolation of exo-20 was not attempted. endo-20: colourless crystals, mp $128-129^{\circ} \mathrm{C}$ (Found: C, $53.59 ; \mathrm{H}, 4.28 ; \mathrm{N}, 3.40 . \mathrm{C}_{19} \mathrm{H}_{18} \mathrm{ClNO}_{2} \mathrm{~S}_{2}$ requires $\mathrm{C}, 53.83 ; \mathrm{H}$, 4.28; N, 3.30%); $R_{\mathrm{f}} 0.2$ (20% EtOAc-hexane); $\delta_{\mathrm{H}} 2.10(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{H}^{7}\right), 2.32\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}^{7}\right), 3.01\left(1 \mathrm{H}, \mathrm{dd}, J 4.4\right.$ and $\left.2.9, \mathrm{H}^{3}\right), 3.04(1 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{H}^{1}\right), 3.07\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}^{4}\right), 4.08\left(1 \mathrm{H}, \mathrm{t}, J 4.4, \mathrm{H}^{2}\right), 4.65(1 \mathrm{H}, \mathrm{dd}$,
$J 5.4$ and $\left.2.4, \mathrm{H}^{6}\right), 5.29\left(1 \mathrm{H}, \mathrm{dd}, J 5.4\right.$ and $\left.4.9, \mathrm{H}^{5}\right), 7.32(5 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH}), 7.62(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.73(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.94(2 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH}) ; \delta_{\mathrm{C}} 34.1,47.1,48.7,51.8,61.4,63.0,85.5,128.0,128.4$, 129.4, 129.8, 131.3, 132.7, 134.7 and $137.2 ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1}$ 1547, 1306, 1153, 740, 687 and 580; m/z (\%) $425\left[\mathrm{M}^{+}\left({ }^{37} \mathrm{Cl}\right), 5\right]$, 423 [$\left.\mathrm{M}^{+}\left({ }^{35} \mathrm{Cl}\right), 15\right], 341$ (12), 246 (77), 187 (68), 170 (100), 135 (81), 125 (66) and 110 (73). exo- $20 \delta_{\mathrm{H}} 1.83\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}^{7}\right), 2.14$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}^{7}\right), 2.86\left(1 \mathrm{H}, \mathrm{dd}, J 4.4\right.$ and $\left.2.9, \mathrm{H}^{4}\right), 3.18\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}^{1}\right)$, $4.15\left(1 \mathrm{H}, \mathrm{t}, J 4.4, \mathrm{H}^{5}\right), 4.27\left(1 \mathrm{H}, \mathrm{dd}, J 5.0\right.$ and $\left.3.7, \mathrm{H}^{2}\right), 4.38(1 \mathrm{H}$, dd, $J 5.0$ and $\left.2.9, \mathrm{H}^{3}\right), 5.29\left(1 \mathrm{H}, \mathrm{dd}, J 4.4\right.$ and $\left.1.5, \mathrm{H}^{6}\right), 7.2-7.8$ $(8 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.94(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$.

$\left(1 S^{*}, 2 R^{*}, 3 R^{*}, 4 R^{*}, 5 R^{*}, 6 R^{*}\right)$-2-Chloro-5-nitro-3,6-bis(phenyl-

 sulfonyl)bicyclo[2.2.1]heptane 21The oxidation of endo-20 $(0.423 \mathrm{~g}, 1.0 \mathrm{mmol})$ according to the general procedure followed by chromatographic purification (silica gel; 30% EtOAc-hexane) gave $0.454 \mathrm{~g}(100 \%)$ of 21 as colourless crystals, mp $169-171^{\circ} \mathrm{C}$ (Found: C, 49.97 ; H, 4.30; $\mathrm{N}, 3.05 . \mathrm{C}_{19} \mathrm{H}_{18} \mathrm{ClNO}_{4} \mathrm{~S}_{2}$ requires C, $50.05 ; \mathrm{H}, 3.98 ; \mathrm{N}, 3.07 \%$); $R_{\mathrm{f}} 0.85\left(50 \%\right.$ EtOAc-hexane); $\delta_{\mathrm{H}} 2.36\left(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{H}^{7}\right), 2.90$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}^{3}\right), 3.11\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}^{1}\right), 3.50\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}^{4}\right), 4.47(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{H}^{6}\right), 4.65\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}^{2}\right), 5.29\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}^{5}\right), 7.61(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, $7.73(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.86(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.93(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$; $\delta_{\mathrm{C}} 34.4,44.8,46.9,56.4,61.7,67.9,85.2,128.4,128.5,129.8$, 129.9, 134.8, 134.9, 136.9 and 137.0; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1554$, 1321, 1311, 1155, 1086, 723 and 688; $m / z(\%) 420\left(\mathrm{M}^{+}-\mathrm{Cl}, 2\right)$, $409\left(\mathrm{M}^{+}-\mathrm{NO}_{2}, 1\right), 368(2), 314(18), 203(58), 141$ (75) and 125 (100).

Ethyl ($4 R^{*}, 5 S^{*}, 6 S^{*}, 7 S^{*}$)-5,6-bis(phenylsulfonyl)-4,5,6,7-tetra-hydro-4,7-methano- 2 H -isoindole-1-carboxylate 22
The reaction of $21(0.456 \mathrm{~g}, 1.0 \mathrm{mmol})$ with ethyl isocyanoacetate (2.2 mmol) and DBU (6.6 mmol) was carried out according to the modified procedure at $55^{\circ} \mathrm{C}$. Chromatographic purification (silica gel; 40% EtOAc-hexane) gave $0.070 \mathrm{~g}(15 \%)$ of the title compound as colourless crystals, mp $194-195^{\circ} \mathrm{C} ; R_{\mathrm{f}} 0.4(50 \% \mathrm{EtOAc}-$ hexane $) ; ~ \delta_{\mathrm{H}} 1.26(3 \mathrm{H}, \mathrm{t}, J 7.0)$, $2.04\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}^{8}\right), 2.56\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}^{8}\right), 3.58(1 \mathrm{H}, \mathrm{dd}, J 4.9$ and 2.0 , $\left.\mathrm{H}^{6}\right), 3.79\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}^{7}\right), 3.90\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}^{4}\right), 4.06(2 \mathrm{H}, \mathrm{m}), 4.47(1 \mathrm{H}$, dd, $J 4.9$ and $\left.3.9, \mathrm{H}^{5}\right), 6.81\left(1 \mathrm{H}, \mathrm{d}, J 2.4, \mathrm{H}^{3}\right), 7.4-7.7(6 \mathrm{H}$, $\mathrm{m}, \mathrm{ArH}), 7.86(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $8.19(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}} 14.3$, $42.2,44.0,50.5,60.0,67.4,68.2,113.5,116.8,128.4,128.5$, $129.0,129.3,129.7,133.8,134.0,135.3,138.6,139.8$ and 160.7; $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3381,1703,1531,1323,1302,1146,1103,688$ and 577; $m / z(\%) 485\left(\mathrm{M}^{+}, 13\right), 344$ (100), 298 (57), 202 (50), 177 (17), 174 (17) and 156 (74).

Diethyl 2,4,6,8-tetrahydro-4,8-methanobenzo[1,2-c:4,5-c']-dipyrrole-1,7-dicarboxylate (syn-23) and diethyl 2,4,6,8-tetra-hydro-4,8-methanobenzo[1,2-c:4,5-c']dipyrrole-1,5-dicarboxylate (anti-23)
The reaction of 25 (see below) ($0.211 \mathrm{~g}, 0.50 \mathrm{mmol}$) with ethyl isocyanoacetate (1.2 mmol) and potassium tert-butoxide (2.1 mmol) was carried out according to the general procedure. Recrystallization ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$-diethyl ether-hexane) of the reaction mixture gave $0.111 \mathrm{~g}(71 \%)$ of pure syn-23. Isolation of anti-23 was not attempted. syn-23: colourless crystals, mp 188$189{ }^{\circ} \mathrm{C}$ (Found: C, 64.96 ; H, 5.91; N, 8.64. $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires $\mathrm{C}, 64.96 ; \mathrm{H}, 5.77 ; \mathrm{N}, 8.91 \%) ; R_{\mathrm{f}} 0.2\left(\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}} 1.38(6 \mathrm{H}, \mathrm{t}$, $J 7.0), 2.78(2 \mathrm{H}, \mathrm{m}), 4.13\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}^{4}\right), 4.2-4.4(4 \mathrm{H}, \mathrm{m}), 4.68$ $\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}^{8}\right), 6.55\left(2 \mathrm{H}, \mathrm{d}, J 2.4, \mathrm{H}^{3}\right.$ and $\left.\mathrm{H}^{5}\right)$ and $8.16(2 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\mathrm{NH}) ; \delta_{\mathrm{C}} 14.5,40.1,41.7,60.0,71.1,112.6,114.9,139.0,142.7$ and $161.2 ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3313,1689,1664,1412,1327,1134$ and 1117; $m / z(\%) 314\left(\mathrm{M}^{+}, 58\right), 285(26), 268$ (57), 239 (75), 221 (100), 194 (84) and 140 (52). anti-23 $\delta_{\mathrm{H}} 1.36$ ($6 \mathrm{H}, \mathrm{t}, J 7.3$), 2.78 $(2 \mathrm{H}, \mathrm{m}), 4.2-4.4(4 \mathrm{H}, \mathrm{m}), 4.41\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}^{4}\right.$ and $\left.\mathrm{H}^{8}\right), 6.58(2 \mathrm{H}$, d, $J 2.4, \mathrm{H}^{3}$ and $\left.\mathrm{H}^{5}\right)$ and $8.11(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH})$.

$\left(1 R^{*}, 4 R^{*}, 5 S^{*}, 6 S^{*}\right)$-5-Chloro-6-phenylthio-2-tosylbicyclo[2.2.1]-hept-2-ene 24

The phenylsulfenylation of $\mathbf{1 6}(0.765 \mathrm{~g}, 3.1 \mathrm{mmol})$ was performed according to the general procedure. Chromatographic purification (silica gel; 20\% EtOAc-hexane) gave 1.201 g (100%) of the title compound as colourless crystals, mp $96-$ $98^{\circ} \mathrm{C}$ (Found: C, $61.41 ; \mathrm{H}, 4.93 . \mathrm{C}_{20} \mathrm{H}_{19} \mathrm{ClO}_{2} \mathrm{~S}_{2}$ requires C, $61.45 ; \mathrm{H}, 4.99 \%) ; R_{\mathrm{f}} 0.75\left(\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}} 1.87\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}^{7}\right), 2.01$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}^{7}\right), 2.43(3 \mathrm{H}, \mathrm{s}), 2.83\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}^{6}\right), 3.10\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}^{1}\right)$, $3.40\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}^{4}\right), 4.18\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}^{5}\right), 7.02\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}^{3}\right), 7.2-7.4$ $(7 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.69(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}} 21.6,46.8,49.0,50.7$, $55.8,63.5,127.1,128.1,129.0,129.9,130.5,134.0,136.0,144.5$, 144.7 and $150.0 ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1308,1300,1142,739,687$, 656 and 586; $m / z(\%) 392\left[\mathrm{M}^{+}\left({ }^{37} \mathrm{Cl}\right), 2\right], 390\left[\mathrm{M}^{+}\left({ }^{35} \mathrm{Cl}\right), 5\right], 355$ (59), 172 (71), 170 (100) and 135 (69).

($\left.1 R^{*}, 4 R^{*}, 5 S^{*}, 6 S^{*}\right)$-5-Chloro-6-phenylsulfonyl-2-tosylbicyclo-[2.2.1]hept-2-ene 25

The oxidation of $24(0.781 \mathrm{~g}, 2.0 \mathrm{mmol})$ followed by chromatographic purification on silica gel $\left(\mathrm{CHCl}_{3}\right)$ gave $0.719 \mathrm{~g}(85 \%)$ of $\mathbf{2 5}$ as colourless crystals, mp $160-162{ }^{\circ} \mathrm{C}$ (Found: C, 56.75 ; $\mathrm{H}, 4.90 . \mathrm{C}_{20} \mathrm{H}_{19} \mathrm{ClO}_{4} \mathrm{~S}_{2}$ requires C, $56.80 ; \mathrm{H}, 4.53 \%$); $R_{\mathrm{f}} 0.45$ $\left(\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}} 1.85\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}^{7}\right), 2.30\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}^{7}\right), 2.48(3 \mathrm{H}, \mathrm{s})$, $2.61\left(1 \mathrm{H}, \mathrm{dd}, J 4.4\right.$ and $\left.2.4, \mathrm{H}^{6}\right), 3.48\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}^{1}\right), 3.52(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{H}^{4}\right), 4.70\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}^{5}\right), 7.09\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}^{3}\right), 7.30(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and 7.55-7.8 ($7 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); $\delta_{\mathrm{C}} 21.7,45.8,46.4,50.8,57.6,73.0$, 128.2, 128.3, 129.5, 130.2, 133.7, 134.3, 136.0, 138.7, 145.0, 146.4 and $150.6 ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1321,1308,1147,604$ and 582; $m / z(\%) 422\left[\mathrm{M}^{+}\left({ }^{35} \mathrm{Cl}\right), 2\right], 296$ (2), 281 (3), 220 (88), 155 (12), 139 (100) and 125 (26).

Acknowledgements

This work has been partially supported by a Grant-in-Aid for Scientific Research on Priority Area from the Ministry of Education, Science, Sports and Culture.

Notes and references

1 P. T. Herwing and K. Müllen, Adv. Mater., 1999, 11, 480; B. Rickborn, Org. React., 1998, 52, 1.

2 F.-G. Klärner, B. Ulrich, M. Kamieth, R. Boese and J. BenetBuchholz, Chem. Eur. J., 1999, 5, 1700; J. Schlögl and B. Kräutler, Synlett, 1999, 969; M. Hashimoto, H. Takagi and K. Yamamura, Tetrahedron Lett., 1999, 40, 6037; R. N. Warrener, D. Margetic, G. Sun, A. S. Amarasekara, P. Foley, D. N. Butler and R. A. Russell, Tetrahedron Lett., 1999, 40, 4111.
3 (a) T. A. Waugh, J. K. Agyin, J. J. Nash and H. Morrison, Tetrahedron Lett., 1999, 40, 6717; (b) T. Kobayashi, T. Tsuzuki
and M. Saitoh, Bull. Chem. Soc. Jpn., 1999, 72, 1597 and references cited therein.
4 Y. Yu, D. N. Lemal and J. P. Jasinski, J. Am. Chem. Soc., 2000, 122, 2440 and references cited therein.
5 T. Nishinaga, A. Wakamiya and K. Komatsu, Tetrahedron Lett., 1999, 40, 4375 and references cited therein.
6 R. H. Mitchell, Y. Chen, V. S. Iyer, D. Y. K. Lau, K. K. Baldridge and J. S. Siegel, J. Am. Chem. Soc., 1996, 118, 2907.
7 S. Ito, N. Ochi, H. Uno, T. Murashima and N. Ono, Chem. Commun., 2000, 893; S. Ito, N. Ochi, T. Murashima, H. Uno and N. Ono, Heterocycles, 2000, 52, 399; S. Ito, H. Uno, T. Murashima and N. Ono, Chem. Commun., 1999, 2275.
8 N. Ono, A. Kamimura and A. Kaji, J. Org. Chem., 1988, 53, 251.

9 D. H. R. Barton and S. Z. Zard, J. Chem. Soc., Chem. Commun., 1985, 1098.
10 The parent molecule, bicyclo[2.2.2]octa-2,5-diene, was reported to decompose gradually above $80^{\circ} \mathrm{C}$: G. Huybrechts, W. Leemans and B. Van Mele, Int. J. Chem. Kinet., 1982, 14, 997.

11 S. Ito, T. Murashima and N. Ono, J. Chem. Soc., Perkin Trans. 1, 1997, 3161.
12 R. Guilard, M. A. Aukauloo, C. Tardieux and E. Vogel, Synthesis, 1995, 1480.
13 A. Merz, J. Kronberger, L. Dunch, A. Neudeck, A. Petr and L. Parkanyi, Angew. Chem., Int. Ed., 1999, 38, 1442.

14 H. Uno, M. Tanaka, T. Inoue and N. Ono, Synthesis, 1999, 471; H. Uno, K. Sakamoto, T. Tominaga and N. Ono, Bull. Chem. Soc. Jpn., 1994, 67, 1441; D. P. Arnord, L. Burgess-Dean, J. Hubbard and A. M. Rahman, Aust. J. Chem., 1994, 47, 969.
15 O. De Lucchi, V. Lucchini, L. Pasquato and G. Modena, J. Org. Chem., 1984, 49, 596.
16 Y. Chung, B. F. Duerr, T. A. McKelvey, P. Nanjappan and A. W. Czarnik, J. Org. Chem., 1989, 54, 1018.

17 A. Tsuda, A. Nakano, H. Furuta, H. Yamochi and A. Osuka, Angew. Chem., Int. Ed., 2000, 39, 558 and references cited therein.
18 Y. Abel and F.-P. Montforts, Tetrahedron Lett., 1997, 38, 1745.
19 A. P. Davis and G. H. Whitham, J. Chem. Soc., Chem. Commun., 1980, 639.
20 P. B. Hopkins and P. L. Fuchs, J. Org. Chem., 1978, 43, 1208.
21 H. Morrison, A. Miller and B. Bigot, J. Am. Chem. Soc., 1983, 105, 2398.

22 R. V. Williams, V. R. Gadgil, G. G. Garner, J. D. Williams and A. Vij, Tetrahedron Lett., 1999, 40, 2689; R. V. Williams, W. D. Edwards, V. R. Gadgil, M. E. Colvin, E. T. Seidl, D. van der Helm and M. B. Hossain, J. Org. Chem., 1998, 63, 5268; K. N. Houk, N. G. Rondan, F. K. Brown, W. L. Jorgensen, J. D. Madura and D. C. Spellmeyer, J. Am. Chem. Soc., 1983, 105, 5980.

23 R. A. Jones, Comprehensive Heterocyclic Chemistry, ed. C. W. Bird and G. W. H. Cheeseman, Pergamon Press, London, 1984, vol. 4, ch. 3.05 .
24 D. J. Chadwick, Comprehensive Heterocyclic Chemistry, ed. C. W. Bird and G. W. H. Cheeseman, Pergamon Press, London, 1984, vol. 4, ch. 3.04.
25 G. D. Hatmen and L. M. Weinstock, Org. Synth., 1988, Coll. Vol. 6, 620.

26 W. H. Muller and P. E. Butler, J. Am. Chem. Soc., 1968, 90, 2075.

[^0]: \dagger Experimental details of compounds 2, 3, 4, 5, 14, 15 and 26, and Ortep drawings of compounds 2, 4, 5, anti-10, 14, 15, 19 and syn-23 are available as supplementary data. For direct electronic access see http://www.rsc.org/suppdata/p1/b0/b006584f/

